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Abstract. The classical occupancy problem where n balls are placed in N cells is used for
testing of random number generators. We show that the statistics of appropriately chosen occupancy
numbers are incompatible with the statistics of many pseudorandom number generators (PRNGs)
even if they are truncated. More than that, the incompatibility shows up on relatively small samples
long before the period of the PRNG is reached. We introduce generalized Fermi–Dirac models as
idealized models for PRNGs. These models are used to make educated guesses of how large the
sample sizes should be to detect the deficiencies of the PRNGs under study. We use the developed
occupancy tests together with some other ones to examine the performance of several widely used
random number generators, including random() of the UNIX C library. We found that random()
failed two of the conducted tests rather badly. We also tested a true random number generator based
on α-decay which passed all our relevant tests successfully.
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1. Introduction. The testing of long sequences of random numbers has grown
in importance in pace with the number of applications of such sequences. Some im-
portant areas of application include all applications employing Monte Carlo methods,
cryptography, and financial mathematics. Some indication of the range of applications
of and interest in random sequences is evidenced by [5], [7], [17], [19], [20], [24], [25],
[26], [27], and [34]. The development of parallel computing has significantly raised
the requirements on the quality of randomizers (random number generators (RNGs));
see, for example, [1] and [2]. Requirements for quality and speed of RNGs in sta-
tistical mechanics applications [4] and in cryptographic applications (cf. [28]) can be
extremely stringent.

For the most part, so-called pseudorandom number generators (PRNGs) are used
to provide “random” numbers. Such generators are algorithmic and the numbers they
produce are, of course, not truly random and can, at best, substitute for true random
numbers with some level of success. Over the years, many researchers have found
serious deficiencies in some well-known PRNGs; see, for example, [16, sections 3.3.2,
3.3.4 (RANDU), 3.6], [2], [11], [12], [21], [23], [29], [31], [35].

Our interest in testing RNGs was initially due to our work in developing a true
random number generator (TRNG) based on radioactive decay. One problem with the
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testing of RNGs in general is in determining any particular set of tests that is sufficient
to certify any given RNG. One reasonable approach suggested by Marsaglia in [23] is
to combine tests that are derived for particular application areas with some battery
of tests, like the ones he describes in [23]. The methods we employ in section 4 below
shed at least some light on this question. They demonstrate that only certain statistics
can be expected to detect certain flaws. Furthermore, even when one has chosen the
“right” statistic, the sample size is of critical importance. Another problem with
testing RNGs is that up to now essentially all tests have been based on asymptotics.
One picks a statistic, shows it is asymptotically normal or Poisson or some other
distribution, and then performs tests based on the asymptotic statistics. The difficulty
here is that good control on errors is almost never available and hence the actual
confidence levels of the tests are neither really known nor knowable. Again, our
methods point to a solution to this problem in a couple of ways. In section 2, we
establish the asymptotics of the first collision times (as well as the distribution of the
intervals between subsequent collision times) but do a careful enough error analysis to
provide bounds on confidence levels for tests involving the first collision times. These
collision times are seen to be asymptotically Weibull. In section 4, we deal with
a situation for which classical asymptotic approaches fall short either of providing
satisfactory estimates on confidence levels or of even covering the full range of sample
sizes of interest. In this case, we abandon asymptotics for a more straightforward
approach based on moment methods that go back to Chebyshev in the 19th century.
As a prelude to this, we use the same approach in section 3 to develop tests based on
classical occupancy statistics.

Besides the analysis of the collision times in section 2 already mentioned, we
review there the basic distributions and the occupancy statistics following von Mises’
approach. The basic model is the Maxwell–Boltzmann (MB) model for distributing
n balls to N cells with each ball having an equal probability of going into any of
the cells. von Mises’ approach is particularly well suited to the development of tests
because of its precise expressions for the factorial moments of multiple occupancy
statistics. For von Mises, the interesting cases involved asymptotics as the ratio of
the number of balls to the number of cells goes to infinity. We extend his approach
slightly to include another asymptotic regime in which this ratio goes to zero. This is
more appropriate for the testing of RNGs when the word size is taken to be relatively
large and is especially more appropriate for the testing of PRNGs since it aids in
the development of tests with sample sizes that are only a fraction of their periods.
Section 2 also includes a discussion of the RNGs considered in this paper as well as a
discussion of the structure of hypothesis tests that are appropriate for randomizers.

In section 3, we discuss the issue of testing with confidence. The issue is whether
one can calculate tail probabilities with enough accuracy to guarantee a particular
significance level for a given test. We demonstrate that this can be done but it
may require the adoption of nonasymptotic methods. An apparent “defect” of linear
congruential generators is that they cannot repeat themselves within a period. This
leads immediately to a “birthday” test that they cannot pass on both theoretical
and practical grounds. One possible “fix” for this situation is to use a PRNG whose
underlying dynamical system operates on a larger than required word space and then
project onto some smaller factor. Detecting the difference between such a generator
with hidden states and a true source of uniformly distributed binary integers is one
of the things that the tests in section 4 are about.

In section 4, we introduce generalized Fermi–Dirac (GFD) models that serve as
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idealized models for certain PRNGs and develop tests on them. In reality, the lessons
illustrated by the methods of this development are more important than any particular
test results. First, as alluded to above, to distinguish between a GFD model and the
appropriate, corresponding MB model, a statistic is singled out by the Neyman–
Pearson lemma. Essentially, only statistics that significantly correlate with this one
have any chance of distinguishing these two distributions. Even more, the choice of
sample size is seen to be critical—a sample can be too small, and too small can still
be large. Second, the tests we develop in this section are nonasymptotic tests and
provide excellent estimates for the confidence levels used. They even provide some
indication of the power of the tests. Since we originally tried to develop asymptotic
tests, we are in a position to compare the nonasymptotic approach with more standard
approaches. We believe these “lessons” point the way to possibly fruitful directions
for future investigations.

In section 5, all the tests we have applied to our generators are described. Finally,
in section 6, the results of the testing are indicated.

2. Classical and generalized classical distributions. The basic model is
associated with the classical problem of randomly distributing n particles or balls
into N cells or boxes [9]. Every one of the n balls may occupy any of the N cells with
probability 1

N , and the occupations for different balls are completely independent.
Therefore, there are Nn equally probable arrangements of the balls over the cells and
the probability of each of these arrangements is 1

Nn . We are interested in the statistics
of the occupation numbers for the cells. These are defined by

xi = #{balls in the ith box}, 1 ≤ i ≤ N.

Since the number of different ways to assign the n balls so that xi go to cell
i, 1 ≤ i ≤ N , is given by n!

x1!x2!···xN ! , it follows that the probability of each event

x1, x2, . . . , xN ,
∑N

i=1 xi = n, is given by PMB(x1, x2, . . . , xN ) = n!
x1!x2!···xN !

1
Nn .

We refer to this model for given n,N and with the probability PMB above as the
MB model with parameters n,N (MB(n,N)).

If we have a source of uniformly distributed binary words of length k, each word
w ∈ Wk, w = (i1, i2, . . . , ik), is ∈ {0, 1}, 1 ≤ s ≤ k, corresponds to a box or cell
among N = 2k boxes. The experiment of drawing an i.i.d. sample, Z1, Z2, . . . , Zn, is
equivalent to an MB(n,N) experiment. If we have a symmetric Bernoulli bit stream,
u1, u2, . . . , ui, . . . , then we can generate a uniform source of any size word, k, by taking
w1 = (u1, u2, . . . , uk), w2 = (uk+1, . . . , u2k), . . . .

The Fermi–Dirac (FD) statistic is another classical model associated with dis-
tributing particles into cells. However, this time there is an exclusion principle that
will not allow an already occupied cell to take an additional ball. In this case, the
occupancy numbers satisfy xi ∈ {0, 1}, 1 ≤ i ≤ N , and the probability of each event

x1, x2, . . . , xN ,
∑N

i=1 xi = n ≤ N , is given by PFD(x1, x2, . . . , xN ) = 1

(Nn)
. We refer

to this model for given n,N as the FD model with parameters n,N (FD(n,N)).
Finally, among the classical distributions, we mention the Bose–Einstein statistic,

which is associated with the distribution of Bosons (indistinguishable particles) into
cells. In this case, an already occupied cell is more likely to receive another particle
than any particular unoccupied cell is. The n balls must now be distributed to the N
cells in such a manner that each event x1, x2, . . . , xN ,

∑N
i=1 xi = n, is equally likely;

here the xi’s are again the occupancy numbers. To assign probabilities, we need to
count the number of ways to write n as a sum of N nonnegative integers, which is
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equal to
(
N+n−1

n

)
. Thus,

PBE(x1, x2, . . . , xN ) =
1(

N+n−1
n

) .(1)

Simulating Bose–Einstein statistics with a uniform source (as a ball in cell model) is
a little more challenging, but it can be done as a variant on a Polya model as follows:
Start with N boxes. The balls are placed in boxes one at a time. If the first ball goes
into box i, place a new box over position i in a tower. The second ball can go into
any of these now N + 1 boxes with equal probability. So,

P (second ball goes into box in tower j �= i) = 1

N + 1
, while

P (second ball goes into box in tower i) =
2

N + 1
.

Continuing in this fashion, we see that each particular outcome (order counts)

with occupation numbers x1, x2, . . . , xN ,
∑N

i=1 xi = n, is assigned probability

Porder−counts(x1, x2, . . . , xN ) =
x1!x2! · · ·xN !

N(N + 1) · · · (N + n− 1)
.

Since there are n!
x1!x2!···xN ! different ways to distribute the n balls to get the same

occupation numbers, it follows that the probability of a given event x1, x2, . . . , xN ,∑N
i=1 xi = n, is

P (x1, x2, . . . , xN ) =
n!

x1!x2! · · ·xN !
· x1!x2! · · ·xN !

N(N + 1) · · · (N + n− 1)
=

1(
N+n−1

n

) ,
which is, of course, the same as (1).

For GFD models, we start with N0 towers of boxes Ti, 1 ≤ i ≤ N0, each with
N1(i) boxes. Balls are placed in the T =

∑N0
i=1N1(i) boxes with an exclusion principle

in force, i.e., if the first ball goes into a box in the ith tower, then no other ball may
enter that box again, leaving the number of boxes in the ith tower that the next ball
can go into diminished by one. We are interested in distributing n ≤ T balls and the
statistics of the occupation numbers in the N0 towers. Clearly the probability of a
given event x1, x2, . . . , xN ,

∑N
i=1 xi = n is given by

PGFD(x1, x2, . . . , xN ) =

(
N1(1)
x1

)(
N1(2)
x2

) · · · (N1(N0)xN0

)
(
T
n

) .

For a given n,N0, N1 (here N1 = N1(i) is a function of the indices 1 ≤ i ≤ N0), we
will refer to this model as theGFDmodel with parameters n,N0, N1 (GFD(n,N0, N1)).

In each of the models above, there is an underlying experiment for which the
order counts. We will not have much use for these in this paper, but for the sake
of the discussion we will give them some names at this time. In the MB case, we
will denote the basic experiment of placing n balls in N cells where order counts
as MBO(n,N). Clearly PMBO(each outcome) = 1

Nn . For FD, the basic ordered
experiment will be denoted by FDO(n,N) with PFDO(each outcome) = 1

C(N,n) . We

have already discussed the ordered version of the Bose–Einstein experiment; we denote
it by BEO(n,N). Finally, the ordered version of the GFD experiment is denoted by

GFDO(n,N0, N1) with PGFDO(x1, . . . , xN ) =
C(N1(1),x1)···C(N1(N0),xN0

)

C(T,n) .
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2.1. Random number generators. Every random number generator produces
a sequence of numbers (or binary digits) {ξn} which pretends to be random. Depend-
ing on how random are “random” number generators, they can be divided into three
big categories:

(i) True random number generators (TRNGs). These RNGs are based on phys-
ical random processes such as radioactive decay, different kinds of thermal
noises, phase fluctuations in oscillating processes, and more. An ideal RNG
producing the Bernoulli sequence (see more below) we also count as a TRNG.
It is useful as a theoretical tool and for purposes of comparison.

(ii) Pseudorandom number generators (PRNGs). These RNGs are based entirely
on algorithms and usually implemented as computer codes; see [16], [30],
and references therein. PRNGs are deterministic and, of course, are not
truly random. They just hope to simulate genuine randomness with some
level of success, which depends on the application. Every PRNG involves
some function F that operates on a space Wk of binary words of length
k. Once a seed w0 ∈ Wk has been chosen, the generator produces words
wj = F (wj−1), 1 ≤ j, until the first time T that wT = w0. The collection
of words {w0, w1, . . . , wT−1} is then a cycle of the mapping F determined
by the seed w0. There may be many different cycles of varying lengths or
there may be only one cycle. Within a given cycle C = C(w0), each word
w ∈ C occurs exactly once. However, many PRNGs follow F by some sort
of projection Φ : Wk → Wk0 , 1 ≤ k0 ≤ k. In these cases, the generator can
produce the same output word more than once. We will refer to T = T (w0)
as the period of the PRNG on the cycle determined by w0. We will refer to k0
as the number of visible states for the PRNG and we will say that a PRNG
with k0 < k has hidden states. We do not consider any PRNGs for which k0
itself depends on the choice of seed.

(iii) Randomly seeded pseudorandom number generators. These RNGs have been
introduced to fix the fundamental problems associated with the periodicity
and deterministic nature of regular PRNGs. The problem is partially solved
by random seeding of a PRNG when we choose the initial value w1 of the
sequence {wj} at random and then apply the algorithm of a PRNG. To
improve the quality of the RNG one can apply random seeding more often.

There are many different methods for generating pseudorandom numbers (see,
for instance, [16], [30], and references therein), and with the advances in testing the
better ones survive and improve. As to testing, we will follow Knuth [16, section 3.3.3]
and call the tests exploring the fundamental limitations of PRNGs theoretical tests.
Theorem P in [16, section 3.3.3] is an example of that kind of theoretical test for a
class of linear congruential sequences, and in section 3.3.4 of [16] there is an analysis
of the deficiencies of linear congruential RNGs. Knuth points out in [16, section 3.3.3]
that the development of theoretical tests is quite difficult and the majority of results
in this area are obtained for statistical tests made for the entire period of a PRNG. In
practice the limitations of PRNGs associated with their periodicity are well known,
and normally a PRNG is used to generate at most Tmax 	 T numbers, where T is its
period. Hence, it is justified to call a theoretical test efficient if it detects a deficiency
of a PRNG based only on the numbers wj, 1 ≤ j ≤ Tmax.

The generators below are considered in this paper: We list them now with a brief
description of their properties.
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I. RAND is a linear congruential PRNG whose output is a sequence of 32-bit
integers Xn such that 0 ≤ Xn ≤ 232 − 1, and Xn is defined by the recursive
formula

Xn = 69069Xn−1 + 1mod232.

RAND has only one orbit consisting of the set of integers {0, 1, . . . , 232 − 1}.
It has no hidden states. The best that RAND can simulate are FD statistics
FDO(n, 232) and FD(n, 232), 1 ≤ n ≤ 232.

II. RANDU is a multiplicative linear congruential PRNG whose output is a
sequence of (odd) 31-bit integers Xn such that 0 ≤ Xn ≤ 231 − 1 and Xn is
defined by the recursive formula

Xn = 65539Xn−1mod231.

Here, X0 is normally taken as odd. RANDU has three orbits: C0 = {0},
C1 = C(1), C2 = C(2). The lengths of these orbits are 1, 230, and 230 − 1,
respectively. RANDU has no hidden states. The best it can simulate are FD
statistics FDO(n,N0) and FD(n,N0), where N0 ∈ {230 − 1, 230} depending
on whether the seed used is an even or odd nonzero integer.

III. GGL is a multiplicative linear congruential PRNG whose output is a sequence
of 31-bit integers Xn such that 0 ≤ Xn ≤ 231 − 1 and Xn is defined by the
recursive formula

Xn = 16807Xn−1mod
(
231 − 1

)
.

This generator has two orbits: C0 = {0} and C1 = {1, 2, . . . , 231 − 1}. The
best it can do is simulate FDO(n, 231−1) and FD(n, 231−1), 1 ≤ n ≤ 231−1.

IV. Lagged Fibonacci generators use an initial set of seed values x1, x2, . . . , xp
and two lags p and q, 1 ≤ q < p, to generate successive elements xi for i > p
by means of the recursion xi = xi−p ◦ xi−q. Here ◦ is some binary oper-
ation which might be +,−, ∗, or (xor) (exclusive or). Following Marsaglia
[23], we designate such a generator by F (p, q, ◦). Lagged Fibonacci gen-
erators of maximal period are obtained when an associated polynomial is
primitive over approriate modular rings; see [6] and [22]. This is true, for
example, of F (17, 5,+) on integers mod2m. (The period is (217 − 1)2m−1—
every nonzero seed determines an orbit of this length.) Other good choices
are F (31, 13,+), F (55, 24,+), and F (250, 103,+). The (xor) versions of these
generators have maximal period (2p− 1) regardless of the word size. Some of
these generators are known by other names: F (250, 103, (xor)) is known as
R250, for example. The initial seeds of these generators can be represented
by m × p binary matrices and thus they operate naturally on W2mp . Their
visible output is obtained by projection onto the pth column vector and are
thus inW2m . We have shown, but will not prove it here, that for F (p, q, (xor))
of maximal period, if the initial m × p seed matrix has rank m, 1 ≤ m ≤ p,
then each nonzero m-bit binary integer will occur exactly 2p−m times and
0 will occur exactly 2p−m − 1. Thus, the best that R250 can simulate, for
example, are GFD models GFDO(n, 2m, N1) and GFD(n, 2m, N1), where
N1(1) = 2250−m−1 and N1(i) = 2250−m, 2 ≤ i ≤ 231. Here we have identified
the indices i with the binary outputs (i − 1)2. We will discuss what we can
say in the “ ◦ ” = “ + ” case below.
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V. random() is a PRNG which is built into the UNIX operating system. Its
output is a sequence of 31-bit integers Xn, 0 ≤ Xn ≤ 231 − 1. The algorithm
on which random() is based is not disclosed; it is only said in the on-line
manual that “random() uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudorandom numbers in the range from 0 to 231 − 1.” It is underscored
that, unlike many RNGs whose several least significant digits are of poor
quality, “all the bits generated by random() are usable.” For example, the
least significant bit of random() “will produce a random binary value.” We
expect that random() has a large number of hidden states but that all visible
states appear with the same or nearly the same frequency. If this is true,
then random() can at best simulate GFD statistics GFDO(n, 231, N1) and
GFD(n, 231, N1) with constant or nearly constant tower heights.

VI. TGGL is obtained by truncating the last 10 digits of GGL producing a PRNG
with 21 visible states and 10 hidden states. The best it can simulate are
GFDO(n, 221, N1) and GFD(n, 221, N1), where N1(1) = 210−1, N1(i) = 210,
2 ≤ i ≤ 221. Here again we have identified the indices i with the binary
outputs (i− 1)2.

VII. TRNG is output from a prototype true random number generator based on
alpha decay.

A summary of the generators is given in Table 1. The pseudorandom genera-
tors were implemented on the Silicon Graphics Origin 200 system (SG 200). For a
comparative study on PRNGs, see also [32].

Table 1
Summary of basic information on the tested random number generators.

Name Type Output
1 TRNG Physical (α-particles) Binary digits
2 R250 Pseudorandom 1- to 31-bit words
3 RAND Pseudorandom Binary words of length 32
4 RANDU Pseudorandom Binary words of length 31
5 GGL Pseudorandom Binary words of length 31
6 random() Pseudorandom Binary words of length 31
7 TGGL Pseudorandom Binary words of length 21
8 F (17, 5, (xor)) Pseudorandom 1- to 17-bit words
9 F (17, 5,+) Pseudorandom 1- to 17-bit words
10 F (31, 13, (xor)) Pseudorandom 1- to 31-bit words

TRNGs are normally bit generators and tests for them are derived from the as-
sumption that their output is typical of a symmetric Bernoulli process. It is trivial
to derive all of the MB models from such output. All of the tests that apply to
this category of generator fall into the category of testing symmetric Bernoulli ver-
sus not symmetric Bernoulli (symmetric Bernoulli)C . In many cases, the tests are
most directly in the form of MB(n,N) versus (MB(n,N))C or MBO(n,N) versus
(MBO(n,N))C for some suitable choice of n, N . All such tests can be applied to all
generators.

In the case of PRNGs we have seen that they can, at best, simulate the ordered
and/or unordered versions of appropriate FD or GFD models. This brings up two
testing questions:

1. How well does the given PRNG simulate the appropriate ordered and/or un-
ordered FD or GFD experiment(s)? This leads to testing FD versus (FD)C ,
FDO versus (FDO)C , GFD versus (GFD)C , or GFDO versus (GFDO)C .
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2. How well does the FD or GFD experiment simulate the corresponding MB
models? This leads to tests of FD versus MB, GFD versus MB, as well as
ordered versions of these.

The testing of all versions of GFD versus (GFD)C will be the subject of another
paper. However, before leaving this subject, we would like to indicate some of its
significance. The simplest cases involve the classical FD distributions, ordered and
unordered. Let N be fixed and take n = N . Each run of FDO(N,N) is a com-
plete sampling that determines a random permutation of the integers 1, 2, . . . , N .
We can associate with each such sampling a map F : {1, 2, . . . , N} → {1, 2, . . . , N},
where F (i1) = i2, F (i2) = i3, . . . , F (iN ) = i1. This determines a PRNG associated
with F . Furthermore, every PRNG that has an orbit of size N represents a possi-
ble complete sampling of the N integers {1, 2, . . . , N}. If a PRNG provides a good
simulation of FDO(N,N), then it will provide good simulations of all FDO(n,N)
(and FD(n,N)) for 1 ≤ n ≤ N . For each run i1, i2, . . . , in associate the sequence
of indices j(1), j(2), . . . , j(n), where ij(1) < ij(2) < · · · < ij(n). There are two
independent statistics that can be associated with this run: (1) the random per-
mutation of the integers 1, 2, . . . , n given by j(1), j(2), . . . , j(n), and (2) the gaps
∆0 = ij(1),∆1 = ij(2)−ij(1), . . . ,∆n = N−ij(n). Both of these statistics are uniformly
distributed and together they are sufficient to determine FDO(n,N). This last state-
ment assumes that, for each n, repeated sampling is possible, which, for a PRNG is
only true in a limited sense. It is significant to note, however, that Marsaglia considers
his gap collision test [23], which is based on collisions in the sequence ∆0,∆1, . . . ,∆n,
to be very powerful in detecting defective PRNGs.

2.2. Basic results on occupation statistics. For the distributionsMB(n,N),
we are interested in the following set of random quantities:

γs = number of cells containing exactly s balls(2)

= # {i : xi = s} , s = 0, 1, . . . ,

and their mean values,

As = E {γs} , E {·} is the expected value with respect to the PMB .(3)

The Poisson distribution, with parameter, say, a, appears in the statistics of
occupancy numbers very often and is denoted by Pa, i.e.,

Pa (m) = e−a a
m

m!
, m = 0, 1, 2, . . . , a ≥ 0.(4)

The distribution of a quantity γ taking on the values 0, 1, 2, . . . is denoted by Pγ , i.e.,

Pγ (m) = P {γ = m} , m = 0, 1, 2, . . . .(5)

The convergence of distributions is understood as the weak convergence in measure
[10, section VIII.1].

A basic result on the statistics of the occupancy numbers γs is that if

N → ∞ and as =
exp

(− n
N

)
ns

s!Ns−1
→ ā, ā ≥ 0,(6)

then

for s ≥ 2 limAs = ā and limPγs
= Pa.(7)
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This result is due to von Mises [33, section IV.9], and it also can be expressed as the
following approximation formula:

Pγs
∼= Pas , as =

exp
(− n

N

)
ns

s!Ns−1
.(8)

In developing tests based on the γs statistics, we will not actually use these asymptotic
results directly. However, the asymptotics do provide insight and guidance in choosing
sample sizes. For this reason, we want to be a bit more precise in our discussion of
these results. von Mises’ asymptotic results are based on his derivation of exact
formulas for the factorial moments µr(s) = E(γs(γs − 1) · · · (γs − (r − 1))) of the
random variables γs. He proves the following [33, section IV.9, formulas (59)–(62),
(68)–(70)].

Theorem 1. The rth-factorial moment for the random variable γs associated
with the MB model with parameters n,N is given by the expression

µr(s) = r!

(
N

r

)
n!

(s!)r(n− sr)!
(N − r)n−rs

Nn
.(9)

Based on (9) we see that the rth-factorial moments of γs on MB(n,N) satisfy
the inequality [

N

s!

( n
N

)s
e−

n
N

]r
e−

nr
N(N−1)−

r(r−1)
N−(r−1)−

sr(sr−1)
n−(sr−1)+

r2s
N−1(10)

≤ µr(s) ≤
[
N

s!

( n
N

)s
e−

n
N

]r
e−

r(r−1)
N − sr(sr−1)

n + r2s
N .

The expression as = N
s!

(
n
N

)s
e−

n
N that appears on both extreme sides of these in-

equalities plays the crucial role in determining the asymptotics for γs when n and N
are properly related. The natural range of the values for as is

0 ≤ as ≤ max
α≥0

N
e−ααs

s!
= N

(
s
e

)s
s!

=
N

√
2πs exp

{
1

12s+θs

} , 0 ≤ θs ≤ 1.(11)

Here, α = n
N and Stirling’s formula was used in the last equality. Following von Mises,

we impose the condition that

n→ ∞, N → ∞, as = N
e−ααs

s!
=

exp
(− n

N

)
ns

s!Ns−1
→ ā, ā ≥ 0,(12)

where the natural number s ≥ 2 and ā can be chosen arbitrarily. It turns out that
there are two ways to keep as constant. To see this let us look at the related equation
for α ≥ 0:

as = N
e−ααs

s!
= ā, ā ≥ 0,(13)

where s ≥ 2 is a fixed integer, ā is a fixed nonnegative number, and N → ∞. As
follows from (11), for (13) to have a solution ā must be in the following interval:

0 ≤ ā ≤ N
(
s
e

)s
s!

=
N

√
2πs exp

{
1

12s+θs

} , 0 ≤ θs ≤ 1.(14)
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An elementary analysis of (13) shows that if (14) is satisfied, then the equation has
two positive solutions α± = α± (s, ā, N) such that

0 < α− (s, ā, N) ≤ s ≤ α+ (s, ā, N) <∞,(15)

lim
N→∞

α− (s, ā, N) = 0, lim
N→∞

α+ (s, ā, N) = ∞,(16)

or, more precisely,

α− (s, ā, N) = (ās!)
1/s
N−1/s (1 + o (1)) as N → ∞,(17)

α+ (s, ā, N) = lnN + s ln (lnN) (1 + o (1)) as N → ∞.(18)

For every fixed N there are, respectively, two values of n providing the same ā:

n = n∓ (s, ā, N) = Nα∓ (s, ā, N) .(19)

Evidently the relations (17), (18), and (19) describe two different scenarios of behavior
for α = α∓ (s, ā, N) and n∓ (s, ā, N) as N → ∞:

low density, α ≤ s, n	 N : n = n− = (ās!)
1/s
N1−1/s (1 + o (1)) ,(20)

high density, α ≥ s, n� N : n = n+ = N [lnN + s ln (lnN) (1 + o (1))] .(21)

The high density case (21) α = α+ (s, ā, N) ≥ s has been studied by von Mises
[33, section IV.9]. In this case clearly the average number of balls per cell α = n/N
approaches infinity, and, hence, the overwhelming number of cells is occupied by more
than s balls, and, in addition to that, As > As−1 > · · · > A0. More precisely, the
statistics of the occupancy numbers are described by the following statement which
is due to von Mises [33, section IV.9] (see also [9, section IV.2, formula (2.12)]).

Proposition 2. Under the von Mises condition (12) and α = n/N → ∞
(which, in fact, is the high density case (21)), the distribution of the random variable
γs approaches the Poisson distribution, i.e.,

Pγs
→ Pā, limP (γs = m) = e−ā ā

m

m!
, m = 0, 1, 2, . . . .(22)

Moreover,

limAs = limE {γs} = ā.(23)

In addition to that,

limP (γs′ = 0) = 1, 0 ≤ s′ ≤ s− 1,(24)

limP (γs′ ≥ K) = 1, s′ ≥ s+ 1, for all K > 0.(25)

In the low density case (20) the average number of balls per cell α = n/N ap-
proaches zero, and the overwhelming number of cells is empty, and, in addition to
that, As < As−1 < · · · < A0. More precisely, an examination shows that the method
of von Mises [33, section IV.9] gives without any alterations the following result for
the low density case (actually, even with less effort than in the high density case). In
the case α→ 0 the von Mises condition (12) turns into the following:

n→ ∞, N → ∞, as = N
αs

s!
=

ns

s!Ns−1
→ ā, ā ≥ 0.(26)
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Theorem 3. Under asymptotic condition (26) and α = n/N → 0 (which, in fact,
is the low density case (20)) the distribution of the random variable γs approaches
the Poisson distribution, i.e.,

Pγs
→ Pā, limP (γs = m) = e−ā ā

m

m!
, m = 0, 1, 2, . . . .(27)

In particular,

limAs = limE {γs} = ā.(28)

In addition to that,

limP (γs′ ≥ K) = 1, 0 ≤ s′ ≤ s− 1, for all K > 0,(29)

limP (γs′ = 0) = 1, s′ ≥ s+ 1.(30)

The relations (29) and (30) indicate that under the asymptotic condition (26) the
statistics of γs′ for s′ �= s collapse to trivial distributions. This suggests that after
appropriate renormalization γ∗s′ of the quantities γs′ their distributions may converge
to one of the standard limit distributions. Indeed, it is shown in [13] (see also [33,
section IV.9]) that under the von Mises condition (12) the following relations hold for
γs = γs (n,N), s ≥ 2, and N → ∞:

limE

{γs
N

}
= as, where as = e

−ā ā
s

s!
,(31)

limE

{
[γs − E {γs}]2

N

}
= as − a2s

[
1 +

(s− ā)2
ā

]
= vs,(32)

and the random variables γs are asymptotically normal with mean value āsN and
variance vsN . Thus the appropriate renormalization here will be

γ∗s =
γs − asN√
vsN

=
γs − asN√(

as − a2s
[
1 + (s−ā)2

ā

])
N

, where as = e
−ā ā

s

s!
.(33)

The normality of random variables γs under condition (12) for N → ∞ has also been
considered in [3], [14] (see also references therein).

Remark 4. Though the cases of the low and the high densities (respectively, (20)
and (21)) are similar in many ways, there remain certain advantages to using the low
density case for testing which are discussed in section 3. An additional advantage of
the low density case is that in that case α = α (s, ā, N) ≤ s and, hence, fewer “balls”
and, consequently, shorter sequences of random numbers are needed.

2.3. Collision times. Another set of random quantities related to the classical
occupancy problem are the collision times (waiting times) [15, section 3.3.2], [8, section
II.7]. To introduce them we consider the process of placing n balls in N cells. We
place the balls in the cells one after another until a ball is placed in a cell that is
already occupied. In that case we say that a collision has occurred and assign to the
collision the variable τ1, where τ1 is the number of the ball to enter the occupied cell.
Having recorded τ1, the time of the first collision, we go on until the next collision and
record the time of this second collision as τ2, which is clearly greater than τ1. In this
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fashion we generate the collision times τ1, τ2, τ3, . . . . The collision times τ1, τ2, . . .
have the following representations:

τ1 = min {t : t > 1 and there exists s < t such that wt = ws} ,(34)

τ2 = min {t : t > τ1 and there exists s < t such that wt = ws} ,
. . .

τk = min {t : t > τk−1 and there exists s < t such that wt = ws} .
Here is a statement of the limiting form of the statistics of collision times.

Theorem 5. For fixed s ≥ 0 and fixed x1, . . . , xs > 0,

P

{
τ1(τ1−1)

2N > x1,
τ2(τ2−1)

2N − τ1(τ1−1)
2N > x2,

. . . , τs(τs−1)
2N − τs−1(τs−1−1)

2N > xs

}
→ e(−x1−x2−···−xs).

That is, the joint distribution of the increments of the nonlinearly transformed colli-
sion times τ∗1, τ

∗
2, . . . , τ

∗
s, where, for each i = 1, 2, . . . , s,

τ∗i =
τ i(τ i − 1)

2N
,

converges weakly to the product of s standard exponential distributions.
Another equivalent interpretation is that the collision times τ1, τ2, . . . , τs after

the nonlinear scaling transformation

τ∗i =
τ i(τ i − 1)

2N
, i = 1, 2, . . . ,

form, asymptotically as N → ∞, the Poissonian point flow with rate λ0 = 1. We will
prove this result without effective estimation of the remainder. We will, however, give
bounds for the s = 1 case and some indications for the s = 2 case that can be used
to estimate errors in these cases.

Proof. We begin with the following remark: if x1, . . . , xs are independent, stan-
dard exponential random variables, i.e., they have joint distribution density

ps(x1, . . . , xs) =

s∏
i=1

e−xiI{xi>0},(35)

then the random variables yi =
1
2 +
√

1
4 + 2(x1 + · · ·+ xi) have joint distribution with

density

qs(y1, . . . , ys) =

(
y1 − 1

2

)
. . .

(
ys − 1

2

)
e−

ys(ys−1)
2 I{y1>1,...,ys>1}.(36)

Here

x1 =
y1(y1 − 1)

2
, . . . , xs =

ys(ys − 1)− ys−1(ys−1 − 1)

2
,

and substitution of these expressions into (35) together with calculation of the Jaco-

bian �(x1,...,xs)
�(y1,...,ys)

gives (36). It is sufficient to check now that the joint distribution of

the random variables

τ̂1 =
τ1√
N
, . . . , τ̂ s =

τN√
N
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converges weakly in C(Rd) to the limiting distribution with density (36). To simplify
the calculations, let’s discuss only the particular case of s = 2. We have for 1 ≤
s1 < s2,

P {τ1 = s1, τ2 = s2}
=
N(N − 1) . . . (N − (s1 − 2))(s1 − 1) . . . (N − (s2 − 3))(s2 − 1)

Ns2

=
(s1 − 1)(s2 − 1)

N2
e−

(s2−3)(s2−1)
2N + o(

s3
2

N2
).

If as

N → ∞, s1√
N

→ y1(1 + o(1)), and
s2√
N

→ y2(1 + o(1)),

then on the set 1 < y1 ≤ y2 < A, for fixed A,

P {τ1 = s1, τ2 = s2} =
1√
N

1√
N
y1y2e

− y2(y2−1)
2

(
1 + o

(
1√
N

))

=
1√
N

1√
N
q

(
s1√
N
,
s2√
N

)(
1 + o

(
1√
N

))
.

Thus, we have proved the theorem by, in fact, proving the local form of the theo-
rem.

Let’s evaluate remainders for s = 1. We have for this case

P{τ1 > n} =
N(N − 1) . . . (N − n+ 1)

Nn
= e

n−1∑
i=1

ln(1− i
N )

.

Assume that 0 < ε = n−1
N < 1

2 and use inequalities

− ε

1− ε < ln(1− ε) < −ε, 1

1− ε < 1 + 2ε

to obtain

P{τ1 > n} ≤ e
−

n−1∑
i=1

i
N

= e−
n(n−1)
2N(37)

and

P{τ1 > n} ≥ e
−

n−1∑
i=1

i

N(1−n−1
N ) ≥ e−

n(n−1)
2N

(
1+

2(n−1)
N

)
.(38)

For any positive x let k = k(x) be the unique integer such that

k(k − 1)

2N
≤ x ≤ k(k + 1)

2N
.

Direct calculation shows that

−1

2
+

√
2Nx+

1

4
≤ k ≤ 1

2
+

√
2Nx+

1

4
.
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Then, for τ∗1 = τ1(τ1−1)
2N , we have

P{τ∗1 > x) ≤ e−
k(k−1)
2N = e−

k(k+1)
2N + k

N ≤ e−x+

√
1+8Nx+1

2N(39)

and

P{τ∗1 > x) ≥ e−
k(k+1)
2N (1+ 2kN ) ≥ e−x

(
1+

1+
√
1+8Nx

N

)
.

These estimations in (39) guarantee that

P{τ∗1 > x} ∼ e−x for x = O
(
N
1
3

)
, N → ∞,(40)

and also provide bounds on the error of the approximation (40).
These estimates can also be used to calculate and provide bounds for the s = 2

case. For example, if we abbreviate k(x1) = k1 and k(x1 + x2) = k2 and use the
definition of k (x), then

P{τ∗1 = x1, τ
∗
2 = x1 + x2} = P{τ1 = k1, τ2 = k2} = A1A2

=
k1 − 1

N

k1 + k2 − 2

N
P{τ1 > k1 + k2}, where

A1 =
N(N − 1) . . . (N − k1 + 2)

Nk1−1

k1 − 1

N

A2 =
(N − k1 + 1) . . . (N − (k1 + k2) + 2)

Nk2−1

k1 + k2 − 2

N
.

The most important conclusion of this section is that

τ1 = O
(√
N
)
.

For example, if k = 32, N = 232 ∼= 4, 295 · 109, then
√
N = 216 ∼= 65 · 103 and we

should expect the first collision to occur in a sample of this size.

3. Sampling with confidence. In previous sections we discussed the limit
statistics for random variables γs as N → ∞ and for collision times, again as N → ∞.
The limit statistics provide important insight and can be useful for practical purposes.
However, most often, we have to deal with a given number N and it is always ques-
tionable if one can use the limit statistics in the place of a given one.

The testing problem that must be addressed is as follows: We fix N = 2k and
consider a finite sequence of binary words {wj}n1 , where n is the number of words
in the sequence. We would like to test whether {wj}n1 is truly based on a uniform
distribution on the sampling space Wk of binary words of length k as it would be if
the words were generated by a truly random Bernoulli sequence. It is customary in
sampling to choose a so-called significance level α, a number between 0 and 1, and
use it to determine a critical region that will depend on the sample size n that has
probability smaller than α of occurring by chance if the distribution is actually the
assumed one. This assumes that tail probabilities for the actual distribution can be
bounded from above in a meaningful way. However, as mentioned in the introduction,
it can be challenging to calculate rigorous but useful bounds on tail probabilities.
There are three approaches to doing so:

1. Provide direct estimates on tail probabilities as we were able to do in the case
of the first collision times in the previous section.
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2. Provide estimates on the error involved in using the limiting distribution
instead of the actual distribution—Berry–Eseen estimates in the case of the
normal distribution might be used for this sort of approach.

3. Use nonasymptotic moment techniques to estimate the distribution function
of the actual distribution and to provide rigorous bounds on tail probabilities.

We illustrate the first approach below with a first collision time test utilizing the
tail probability estimates (37) and (38) of the previous section. We illustrate the third
approach both below in this section with tests based on the γs statistics and again in
section 4, in a more complex situation, with tests designed to differentiate between
GFD(n,N0, N1) and MB(n,N0). The second approach is difficult to achieve. We
will see in section 4 that Berry–Eseen estimates can be used to justify some tests that
cover a part of our range of interest, but only a small part.

3.1. First collision test. The following table (Table 2) was computed using
(37) and (38).

Table 2
Tail cutoffs for a range of significance levels for first collision times.

N α n such that P (τ1 ≥ n) ≤ α n such that P (τ1 ≤ n) ≤ α

231 .05 113431 14844

231 .01 140638 6571

231 .005 150852 4641

231 .001 172247 2074

231 .0005 180688 1467

Based on this table, one can construct a number of hypothesis tests of the type
MB versus (MB)C . For example, at the .001 level of significance we have the following
two-tailed test.

First collision test for MB versus (MB)C . For N = 231, take a sample
of size n = 218. Determine the time τ1 of the first collision in this sample. Reject
H0 :MB and accept Ha : (MB)C if either τ1 ≥ 180688 or τ1 ≤ 1467.

This two-tailed test is significant at the .001 level. The reader should note that
218 > 180688. Actually, this test is a theoretical test for PRNGs that have no hidden
states. It does not have to be run for such generators since they are bound to never
have any collisions within their period. In particular, RANDU, RAND, and GGL
automatically flunk this test. Furthermore, the sample size needed to flunk them
at the .001 significance level (180688 for a two-tailed test, 172247 for a one-tailed
test) is the most efficient of the tests that we know of based on the inability of these
generators to repeat over their period.

The first collision test can also detect problems for PRNGs with hidden states.
For example, we form a PRNG with hidden states using the PRNGGGL by truncating
bits 0–21 so only the most significant bits 22–30 (9 out of 31) are visible. The seed for
GGL that we have chosen is 186739657. We use the resulting generator to generate
random words of length 36 by combining four consecutive output words of length 9
bits each. We encountered no collisions among the first 1591139 36-bit words thus
generated. The probability of such an event if these 36-bit words were truly uniformly
distributed is less than 10−8. Note that we have used only 4(1591139) (truncated)
output words of GGL, which is less than 0.003 of GGL’s period of 2147483647.

3.2. Tests based on γs-statistics. It would be very difficult to estimate the er-
rors in approximating the γs-distributions by their limiting Poisson distributions, and,
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Fig. 1. The smooth and the polygonal curves in this figure illustrate the way in which a
distribution function (the smooth curve) must intersect its Chebyshev polygonal approximation: each
of the segments of the polygonal plot is intersected exactly once by the continuous curve.

therefore, we would not be able to rigorously bound the tail probabilities if we used the
Poisson distributions to determine critical regions. Furthermore, for relatively small
N and n the actual distributions are not even close to the limiting distributions. We
avoid these difficulties by using MAPLE to calculate accurate approximations for the
higher order moments of the γs random variables from the precise formulas for their
factorial moments due to von Mises.

These highly accurate values now permit the use of classical moment theorems
due to Chebyshev. In 1874, Chebyshev showed the following (see [33, section VIII,
B]): Let V1 be a distribution function that has moments of all orders, whose first 2m
moments M0,M1, . . . ,M2m−1 are known, and assume that V1 increases at more than
m− 1 points. Then there exists a unique m-step function V whose first 2m moments
agree with those of V1. Furthermore, unless V = V1, V and V1 must intersect exactly
2m− 1 times, once on each of the m vertical segments of V and once on each of the
m− 1 interior flat (horizontal) segments of V (see Figure 1 for a typical situation).

It follows that if X1 is a random variable with distribution V1, and V has jumps
A1, A2, . . . , Am at the points a1, a2, . . . , am, then P (X1 ≤ a1) ≤ A1 and P (X1 ≥
am) ≤ Am. Given the moments M0,M1, . . . ,M2m−1, the following steps are required
to determine the m-step function that has these same moments (see [33, section
VIII, 4.3]):

1. Solve the system

M0co +M1c1 + · · ·+Mm−1cm−1 = −Mm,
· · · = · · ·

Mm−1c0 +Mmc1 + · · ·+M2m−2cm−1 = −M2m−1.
(41)

2. Find the roots a1, a2, . . . , am of the polynomial

xm + cm−1x
m−1 + · · ·+ c1x+ c0.(42)
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There will be m distinct positive real roots of this polynomial.
3. Solve the system

A1 +A2 + · · ·+Am =M0 = 1,
a1A1 + a2A2 + · · ·+ amAm = M1,
a21A1 + a

2
2A2 + · · ·+ a2mAm = M2,

· · · = · · ·
am−1
1 A1 + a

m−1
2 A2 + · · ·+ am−1

m Am = Mm−1

(43)

for jump masses A1, A2, . . . , Am (see the plot in Figure 3 of the next section for an
illustration). To illustrate, tests involving γ2 and γ3 can be based on Table 3 below.

Table 3
This table can be used to determine a number of one- and two-tailed tests of MB versus (MB)C .

For example, using the first row, for a generator of 17-bit words, take a sample of size n = 212 and
reject MB if γ2 ≤ 34 or γ2 ≥ 99. This two-tailed test is valid at the .0005 significance level.

s N n m a1 A1 am Am

2 217 212 8 34.9 .0004 98.3 .00004

2 255 230 8 35.9 .0004 102.5 .00003

2 231 218 7 5.09 .0046 35.5 .00008

2 231 219 7 38.2 .0016 98.4 .0002

2 231 218 8 4.3 .0018 38 .00001

2 231 219 8 35.9 .0009 102.4 .00003

2 232 219 8 13.6 .0008 60.8 .00002

3 231 223 8 7.1 .0012 45.7 .00001

3 231 224 8 120.5 .0003 228.5 .00005

Once again, for RAND, RANDU, GGL, and the (xor) lagged Fibonacci generators
(seeded with a full rank initial matrix), all of these tests, in particular those utilizing
the γ2-statistic, are theoretical tests. In particular, the sixth and seventh rows of the
table show that a sample of size 219 will be sufficient to fail RANDU, GGL, RAND,
and F (31, 13, (xor)), provided it is seeded with a full rank initial matrix at the .001
significance level. The first row of the table shows that a sample of size 212 will catch
F (17, 5, (xor)) (provided it is seeded with a full rank matrix). Finally, the second row
of the table shows that a sample of size 230 will be sufficient to catch F (55, 24, (xor))
provided it is seeded with a full rank initial matrix. We estimate that a theoretical
test for F (250, 103, (xor)) utilizing the γ2-statistics would require a sample of size on
the order of 2128, which is not computationally feasible at this time.

Tests based on γs statistics can also be used on generators with hidden states,
but it is not clear at this point what values of n and N should be looked at. The next
section provides guidelines that help with this.

4. GFD versus MB and MB versus (MB)C . We first develop tests for
GFD models versus MB models. These are used to derive an empirical rule that is
applied in developing MB versus (MB)C tests for PRNGs.

4.1. GFD model versus MB model. Let’s consider as in section 2 a PRNG
model based on a dynamical system F :Wk →Wk followed by a truncation operator
Φ : Wk → Wk0 . Recall that k0 is the number of visible digits. Let seed w0 be
chosen and let T ≤ 2k be the period of the PRNG on the cycle determined by w0.
This means that on the interval [0, T − 1] the system Xn+1 = F (Xn) has no self-
intersection (NSI), i.e., the sequence X (0) , . . . , X (T − 1) is a permutation of the set



OCCUPANCY NUMBER TESTING 1997

of all states {X (0) , . . . , X (T − 1)} ⊂ Wk when this set is endowed with the order
inherited from Wk. This holds for each cycle and the cycles partition the phase space
Wk. This is equivalent to the condition that the invariant measure of Xn (·) is the
uniform distribution on Wk.

Put N0 = 2k0 = |Wk0 |, the number of visible states. For each 1 ≤ i ≤ N0, let
N1(i) equal the number of times that the binary word w = (i− 1)(2) appears in the
cycle C(w0); here (i−1)(2) is the binary representation for the integer i−1, and note

that
∑N0

i=1N1(i) = T (ω0). The “maximally random” experiments, incorporating the
NSI property, the main feature of the dynamical systems, that we can associate with
such a generator are the GFD experiments GFDO(◦, N0, N1) and GFD(◦, N0, N1)
briefly described in section 2. Note that the functions N1 = N1(i) in these models
will usually depend on the seed ω0.

An alternative description of a GFDO(◦, N0, N1) or a GFD(◦, N0, N1) experi-
ment is as follows. A container holds T balls which are labeled uniquely by ordered
pairs of integers (i, j), where 1 ≤ i ≤ N0, 1 ≤ j ≤ N1(i), T =

∑N0
i=1N1(i). For

1 ≤ n ≤ T , n of these balls are drawn randomly, without replacement, and assigned
one at a time to N0 cells, which have been labeled from 1 to N0, according to the
first coordinate of the ball’s label, i.e., ball (i, j) is assigned to cell i. The MB exper-
iment can be viewed as a GFD experiment with N1(i) = ∞ for all i, or equivalently
as one run for constant N1(i) = N1 ≥ 1 where drawing is with replacement. Let
F : Wk → Wk and Φ : Wk → Wk0 be as above. There is a straightforward connec-
tion between the GFD scheme and PRNGs based on such dynamical systems. First,
each F determines a partition of Wk into orbits C(ωi), i = 1, . . . ,m. On each or-
bit, the element ω ∈ C(ωi) can be relabeled in terms of pairs of indices (i, j), where
i = Φ(ω) ∈Wk0 and 1 ≤ j ≤ N1(i). Once this has been done, F |C(ωi) and each initial
seed ω0 ∈ C(ωi) determines a complete sampling (i1, j1), (i2, j2), . . . , (iT , jT ) of the
elements of the cycle and therefore could represent the possible outcomes of running
an exhaustive GFD experiment on T elements. On the other hand, if we have a parti-
tion ofWk into disjoint sets S1, S2, . . . , Sm with |Si| = Ti, 1 ≤ i ≤ m; and a projection
Φ :Wk →Wk0 , we can label each ω ∈ Si uniquely by indices (i,Φ(ω), j). Then for each
i an exhaustive sampling of GFD(Ti, N0, N1), say (i, r1, j1), (i, r2, j2), . . . , (i, rTi , jTi),
will determine a map F |Si by F (i, r1, j1) = (i, r2, j2), . . . , F (i, rTi , jTi) = (i, r1, j1).
The map F : Wk → Wk determined by these restrictions combined with Φ will
determine a PRNG associated with the given partition and the complete random-
sampling-without-replacement of the partition sets. Of course any given PRNG could
correspond to “nonrepresentative” results of the associated GFD experiments and
for that reason a hypothesis test that distinguishes between GFD(n,N0, N1) and
MB(n,N0) will not necessarily distinguish between any particular PRNG and the
MB model. However, all the PRNGs and the GFD models share the underlying NSI
property and thus analyzing the GFD versus MB situation should provide guidance
on the construction of hypothesis tests that have good potential for detecting differ-
ences caused by the NSI defect. This expectation is in fact confirmed in practice. In
the remainder of this section, we first develop the most powerful (or nearly so) tests
for detecting the difference between GFD(·, N0, N1) andMB(·, N0), based on N0, N1

and a choice of significance level α > 0. This analysis will produce estimates on the
minimal range for n needed to detect the difference between these models for the
given significance level. Again, we caution that for any given PRNG, the relevancy of
the “test” must be established by actually running it.

Returning to the GFD scheme, for n,N0, N1, we are interested in the occupation
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numbers x1, x2, . . . , xN0 for the positions i = 1, 2, . . . , N0. Let (x1, . . . , xN0) = ω be a
“typical” realization of the GFD experiment; the set of such realizations, as a rule, is
smaller than the set of outcomes of MB statistics. The last set contains all sequences

{xi, i = 1, 2, . . . , N0} ,
N0∑
i=1

xi = n, 0 ≤ xi ≤ n.

Let (ΩMB , PMB) and (ΩGFD, PGFD) be the probability spaces for theMB experiment
and the GFD experiment, respectively. Clearly,

ΩGFD ⊆ ΩMB .

We have the following measures on ΩMB :

PGFD (ω) =




(N1(1)x1
)···(N1(N0)xN0

)

(Tn)
if ω ∈ ΩGFD,

0 if ω ∈ ΩMB − ΩGFD,

PMB (ω) =
n!

x1! · · ·xN0 !
(

1

N0

)n

=
n!

x1! · · ·xN0 !
(

1

N0

)x1

· · ·
(

1

N0

)xN0

.

According to the Neyman–Pearson lemma, in order to distinguish the two hypotheses

H0 : the underlying distribution is MB,

H1 : the underlying distribution is GFD,

it is optimal to study the ratio

π0 (ω) =
PGFD (ω)

PMB (ω)
=

(
N0∏
i=1

N1(i) (N1(i)− 1) · · · (N1(i)− xi + 1)

)
Nn

0

(T ) (T − 1) · · · (T − n+ 1)

=

(
N0∏
i=1

N1(i) (N1(i)− 1) · · · (N1(i)− xi + 1)

)
N1

n (
1− 1

T

) · · · (1− n+1
T

)

=

N0∏
i=1

N1(i)

N1

N0∏
i=1

(
1− 1

N1(i)

)
· · ·
(
1− xi−1

N1(i)

)
(
1− 1

N0N1

)
· · ·
(
1− n−1

N0N1

) .

The Neyman–Pearson lemma (cf. [18, section III, Theorem 1]) tells us that the distri-
butions of the statistic π0 with respect to the law PMB (i.e., under the condition H0)
and with respect to the law PGFD (i.e., under condition H1) are maximally different.
If the variance of N1 is large, then using this statistic to test the null-hypothesis will
require knowing a great deal about the generator and the particular cycle being used.
The situation is greatly simplified if the N1(i) have little variance. Let’s begin with
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the situation when, for all i,N1(i) = N1. In this case the expression for π0 simplifies
to

π0 (ω) =

N0∏
i=1

(
1− 1

N1

)
· · ·
(
1− xi−1

N1

)
(
1− 1

N0N1

)
· · ·
(
1− n−1

N0N1

)

=
e

∑N0

i=1

∑xi−1
s=1

ln

(
1− s

N1

)

e

∑n−1
j=1

ln

(
1− j

N0N1

) .

In many cases this ratio π0 (ω), under the assumption that for all i,N1(i) =
N1, can be approximated by the simpler expression containing the quadratic forms,
xi(xi − 1), of the occupation numbers xi, i = 1, 2, . . . , N0, Σxi = n:

π0 (ω) ≈ e−
∑N0

i=1

xi(xi−1)
2N1

+
n(n−1)
2N0N1 .

Because of this, we choose to develop tests based on the statistic Qn,N1 (N0) =∑N0
i=1 xi(xi − 1). Since

N0∑
i=1

xi(xi − 1) =

N0∑
i=1

x2
i −

N0∑
i=1

xi =

N0∑
i=1

x2
i − n,

we can deal instead with X =
∑N0

i=1 x
2
i . This in turn is equivalent to the Pearson X 2

statistic,

X 2 =
∑(

xi − n
N0

)2

√
n
N0

,

which (see [33, section IX, C]) for n � N0 and n,N0 → ∞ has a χ2
N0−1-distribution

(which would certainly be approximately normal).
However, we are interested in keeping n as small as possible and in fact prefer

to have n 	 N0 if possible. Thus, in our region of interest, these asymptotic results
are certainly questionable or downright invalid. There are ways around this: Cheby-
shev’s inequality can be used, which of course is crude, or the MB experiment can
be randomized, which reintroduces normality, but at a price. The experiment of ran-
domly sampling ν from a Poisson distribution with parameter n and then running the
MB(ν,N0) experiment is equivalent to running N0 independent Poisson processes
each with parameter n

N0
. Berry–Esseen estimates for this randomized experiment

can then be used to estimate bounds on significance levels in using the normal to
approximate the sampling distribution. If N0 = 231, the Berry–Esseen estimate is
not useful for n < 226. This means that the randomized experiment is of no use
below that number. But, for N0 = 231, we are interested in 217 ≤ n ≤ 236, or
so. For the statistic X, the variance under the randomized experiment is given by
V ar(X) = 2N0(

n
N0

)2(1+2 n
N0

). The 2N0(
n
N0

)2 factor in this expression is on the order
of the variance of X under the nonrandomized experiment; however, the (1 + 2 n

N0
)

factor grows with n
N0

and essentially renders the model useless beyond about n = 230,
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2 2 2 2
17 26 30 36

. . . .

Nothing Asymptotic

is well−founded
Randomized Poisson

and B−E estimates are

good

Chebyshev better

than Poisson

Maybe Chi−square

Range of Interest

Situation with Nonasymptotics

Nonasymptotics good

Situation with Asymptotics

Fig. 2. This diagram indicates regions of applicability of various asymptotic methods within
the region of interest versus the much simpler situation for the nonasymptotic methods used in this
paper.

useless in the sense that it begins to perform worse than just using Chebyshev’s in-
equality would. To go beyond 230, one has to appeal directly to Chebyshev’s inequality
until n is large enough to justify the Chi-square approximation to the multinomial.
Even so, there are no rules for determining how large n needs to be in order to guaran-
tee a given accuracy on the significance level. The inability to guarantee a bound on
the significance level of tests based on asymptotic methods have plagued the testing
of randomizers from the beginning. As far as we can tell, this problem has largely
been ignored.

However, we can avoid all of these difficulties. We use MAPLE to calculate
rational expressions in n,N0 for higher order moments of the random variable X
for the distribution MB(n,N0). These expressions are very complex and soon go
beyond anyone’s capacity to calculate by hand. From these expressions, we again
use MAPLE to calculate exact rational values of the moments of X for appropriate
ranges of values for n,N0. These exact values now permit the use of the same classical
moment theorems due to Chebyshev that were used in section 3 for the γs statistics.
In fact, the situation now is better than it was then. The moment values in this
case are really precise and no errors occur until the roots of the associated monic
polynomial of step 2 (see (42)) are found. It is thus easier to control the errors in
this case. In the end, for a given N0, N1, and significance level α, we are able to
determine a critical value and a minimum sample size n needed to have a chance of
distinguishing between X on GFD(n,N0, N1) and X on MB(n,N0). Furthermore,
all errors involved can be controlled precisely and the analyses are valid over the entire
range of our interest without having to shift from one model to another. The diagram
in Figure 2 provides a good visual summary of the situation.

Before proceeding with this program, let’s consider the utility of X when N1 is
not assumed to be constant. Our test will compare EGFD(X) with EMB(X). This
next result gives a very useful representation of EGFD(X).
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Theorem 6. On GFD(n,N0, N1),

EGFD(X) = n+

[
V ar(N1)

N1

+
(
N1 − 1

)] n(n− 1)

N0N1 − 1
,(44)

where

X =

N0∑
i=1

x2
i , N1 =

N0∑
i=1

N1(i)

N0
, and V ar(N1) =

N0∑
i=1

(N1(i)−N1)
2

N0
.

Proof. Let T =
∑N0

i=1N1(i) = N0N1, and for each i, let xi = ε1(i) + ε2(i) + · · ·+
εN1(i)(i), where εj(i) is the occupation number (either 0 or 1) of the jth box in ith
tower of the FD model; then

EGFD(εj (i)) =

(
T−1
n−1

)
(
T
n

) =
n

T
,

EGFD(xi) =
nN1(i)

T
,

EGFD(εiεj) =

(
T−2
n−2

)
(
T
n

) =
n (n− 1)

(T ) (T − 1)
,

EGFD(x
2
i ) = N1(i)EGFD(ε1(i)) +N1(i) (N1(i)− 1)EGFD(ε1ε2)

=
nN1(i)

T
+
N1(i) (N1(i)− 1)n (n− 1)

(T ) (T − 1)
,

EGFD(X) = EGFD

(
N0∑
i−1

x2
i

)
=

n

(
N0∑
i=1

N1(i)

)
T

+

n (n− 1)

(
N0∑
i=1

N1(i) (N1(i)− 1)

)
(T ) (T − 1)

= n+

n (n− 1)

(
N0∑
i=1

N1(i) (N1(i)− 1)

)
(T ) (T − 1)

= n+

[
V ar(N1)

N1

+
(
N1 − 1

)] n(n− 1)

N0N1 − 1
.

If the V ar(N1) = 0, we get from (44) the expression for EGFD(X) under the
assumption that for all i,N1(i) = N1. However, it is clear from (44) thatX will remain

a valuable test statistic as long as the V ar(N1)

N1
term is small. If this term is large,

then one might hope that EGFD(X) significantly overshoots EMB(X) = n+ n(n−1)
N0

,
and we might still have a test that can discriminate between GFD and MB. As we
will see, this in fact can happen in important cases.

We first deal with the case when V ar(N1)

N1
is negligible. Our strategy is the fol-

lowing: For a given N0, N1 and a choice of significance level α > 0, find an m such
that the Chebyshev m-step distribution determined by the first 2m moments of the
distribution function PMB(X ≤ y) has the property that A1 ≤ α and EGFD(X) < a1.
Then a1 is a suitable critical value for rejection of the hypothesis H0 that the distri-
bution isMB (n,N0). To implement this strategy, we need to be able to calculate (a)



2002 FIGOTIN, GORDON, MOLCHANOV, QUINN, AND STAVRAKAS

EGFD(X) and (b) EMB(X
k) for k = 0, 1, 2, . . . , 2m− 1 for a suitably chosen positive

integer m. We have already calculated (a) above,

EGFD(X) = n+
(
N1 − 1

) n(n− 1)

N0N1 − 1
.

We are dropping the V ar(N1)

N1
term in (44) since we are presently assuming that

it is negligible.
For MB we need to calculate EMB(X

k) for arbitrary k. We define yi = x
2
i so that

Xk =

(
N0∑
i=1

x2
i

)k

=

(
N0∑
i=1

yi

)k

.

The terms of the rightmost expression are of the form yj1i1 y
j2
i2
. . . yjkik , where

j1 + j2 + · · ·+ jk = k and some ji can be 0.

We can assume these have been arranged in nonincreasing order so that j1 ≥ j2 ≥
j3 ≥ · · · ≥ jk. Furthermore, for any such term,

EMB

(
yj1i1 y

j2
i2
. . . yjkik

)
= EMB

(
yj11 y

j2
2 . . . y

jk
k

)
.

Each term of the form yj11 y
j2
2 . . . y

jk
k can be uniquely associated with the nonincreasing

finite sequence (j1, j2, . . . , jk). Thus, there are three tasks involved in calculating a
kth moment:

1. Generate all of the distinct, nonincreasing sequences (j1, j2, . . . , jk). We call
those sequences admissible.

2. Determine the number of terms in the expansion of (
∑N0

i=1 yi)
k associated with

each of these sequences.
3. Calculate EMB(y

j1
1 y

j2
2 . . . y

ik
k ) for each sequence.

We wrote a MAPLE procedure for generating the sequences (j1, j2, . . . , jk). For
example, the outcome of this procedure for k = 4 produces the following admissible
sequences:

(1, 1, 1, 1), (2, 1, 1, 0), (2, 2, 0, 0), (3, 1, 0, 0), (4, 0, 0, 0).

The number of terms associated with each sequence is given by the formula

#(j1, j2, . . . , jk)(45)

=

(
k

j1, j2, . . . , jk

)(
N0

β1

)(
N0 − β1

β2

)
· · ·
(
N0 −

∑s−1
j=1 βj

βs

)
,

where the βi are the multiplicities of the distinct nonzero jr. More precisely, s is the
number of distinct nonzero numbers in the list 〈js1 , . . . , jsk〉 and β1, . . . , βm are the
corresponding multiplicities of those nonzero numbers arranged in descending order.
To establish the formula (45) we use the multinomial expansion for (

∑N0
i=1 yi)

k:

∑
j1+j2+···+jN0=k

(
k

j1, j2, . . . , jN0

)
yj11 y

j2
2 · · · yjN0N0

=
∑

js1+js2+···+jsk=k

(
k

js1 , js2 , . . . , jsk

)
y
js1
is1
y
js2
is2

· · · yjskisk
,
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Table 4
Based on appropriate Chebyshev 7-step functions we calculate the parameters needed for testing

the relevant statistical hypotheses.

1 2 3 4 5 6 7 8 9

n N1 EGDF EMB a1 A1=α
5∑
1

Ai B1 B6

217 1 131072 131080 131072.45 0.04 .9978 .45 16

219 1 524288 524416 524364 .0016 .9838 76 44

219 2 524352 524416 524364 .0016 .9838 12 44

222 23 4201471 4202495 4202024 .00062 .9711 553 309

222 24 4201983 4202495 4202024 .00062 .9711 41 309

224 25 16904191 16908287 16906376 .00057 .9693 21822 1218

224 26 16906239 16908287 16906376 .00057 .9693 137 1218

226 27 69189631 69206015 69198344 .00055 .9689 8712 4853

226 28 69197823 69206015 69198344 .00055 .9689 520 4853

228 29 301924351 301959175 301924351 .00055 .9687 34823 19396

228 210 381957119 301959175 301924351 .00055 .9687 2055 19396

230 211 1610350592 1610692730 1610489858 .00055 .9687 139267 77566

230 212 1610481664 1610692730 1610489858 .00055 .9687 8195 77566

232 213 12883853310 12884901890 12884410350 .00055 .9687 557042 310245

232 214 12884377600 12884901890 12884410350 .00055 .9687 32754 310245

234 215 154614628300 154618822600 154616856500 .00055 .9687 2228141 1221096

234 216 159616725500 154618822600 154616856500 .00055 .9687 130989 1221096

assuming that

js1 ≥ js2 ≥ js3 ≥ · · · , where jsr ≥ 0 and

js1 + js2 + · · ·+ jsk = k.

The task of picking the yisr corresponding to the nonzero jsr can be recognized as
the task of picking the indices that will go with distinct values of the jsr . There will
be
(
N0
β1

)
ways of choosing the set {yis1 , yis2 , . . . , yisβ1 },

(
N0−β1

β2

)
ways of choosing the

set {yisβ1+1 , . . . , yisβ1+β2
}, and so on.

Finally, EMB(y
j1
1 y

j2
2 . . . y

ik
k ) may be calculated using the generating function

gk =

(
1− k

N0
+
eα1

N0
+
eα2

N0
+ · · ·+ e

αk

N0

)n

.

Another MAPLE procedure we wrote calculates #(j1, j2, . . . , jk) ·EMB(y
j1
1 y

j2
2 . . . y

ik
k )

for each admissible (j1, j2, . . . , jk).
The two MAPLE procedures mentioned above can be used to calculate the kth

moments of X for k = 1, 2, . . . .
Since the momentsMj in the system (41) are rational, MAPLE finds exact values

for the unknowns cj . In step 2 using MAPLE we can find the roots of the polynomial
(42) with any desired accuracy but not exactly. By choosing appropriate tolerances
in step 2 we controlled the accuracy of Aj in system (43). In particular, the numbers
reported in Table 4 have the indicated accuracy.



2004 FIGOTIN, GORDON, MOLCHANOV, QUINN, AND STAVRAKAS

Fig. 3. This is the plot of the Chebyshev 7-step function for the random variable X on
MB (n,N0), where N0 = 231, n = 228. The MAPLE procedure produces a1 = 3.0192 · 108 and
A1 = .00054.

In Table 4, we use the Chebyshev 7-step function for X on MB
(
n, 231

)
to de-

termine the minimum sample sizes n needed to distinguish between MB
(
n, 231

)
and

GDF
(
n, 231, N1

)
at the calculated significance level, where 1 ≤ N1 ≤ 216. Since

when N1 = 1 EGFD(X) = n, it follows that every PRNG with no hidden bits will fail
the test in line 1 of Table 4. In Figure 3, we plot the Chebyshev 7-step function for
X on MB(228, 231).

The only thing questionable about this test is the fact that α = .04. However,
by running the test two or three times, one can achieve satisfactory significance levels
and still reject the hypothesis that the model is MB. Thus, tests for which α ≤ .001
will reject the hypothesis MB based on a sample of no more than 219 points, if these
points are being generated by a PRNG with the NSI property. The last column in
the table is being used to give some indication of the power of the tests. The upward
variability of the GFD model is less than that of the MB model for the statistic X.
The column headed by

∑5
1Ai gives a lower bound on PMB(X ≤ a6); thus we expect,

but have not proved, that

PGFD(X ≤ EGFD(X) + a6 − EMB(X)) ≥ PMB(X ≤ a6 − EMB(X)).

Our expectation, therefore, is that the tests for which the B1 = a1 − EGFD entry is
greater than the B6 = a6 − EMB entry will have power at least that of the entry in
column 7. Thus, if N1 = 25 and we run a test with n = 224 and the real underlying
model is the GFD model, then the statistic X produced should fail the test at least
97% of the time. For the other rows where column 8 is less than column 9, we don’t
presume anything about the power of the test, but the test is still valid and can be
tried.

We add to Table 4 this next table (Table 5) which provides some idea concerning
what happens when N0 is also allowed to vary.
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Table 5

n N = N0 N1 = N1 EGFD(X) a1 A1

215 210 27 1073128 1076416 .0011

224 210 216 27489047600 274892157900 .0011

238 210 216 7378697650·1010 7378697653·1010 .0011

226 215 216 137503963200 137504129300 .0006

223 221 210 41910268 41912390 .0006

224 221 210 150863864 150933636 .0006

The values of n in this table are the smallest powers of 2 for which EGFD(X) ≤ a1
for the given N0 and N1.

Now, if V ar(N1)

N1
is not negligible, one could not expect the above approach to lead

to a test that would detect the difference between the GFD and MB models at hand.
The difference between EMB(X) = n + n(n−1)

N0
and the term n + (N1 − 1) n(n−1)

N0N1−1
is

n(n−1)

N0N1−1
(1 − 1

N0
). If N0 is large, then this difference is on the order of n(n−1)

N0N1−1
. But

then, EGFD(X)−EMB(X) = n+ (N1 − 1) n(n−1)

N0N1−1
+ V ar(N1)

N1
( n(n−1)

N0N1−1
)−EMB(X) ≈

(V ar(N1)

N1
− 1)( n(n−1)

N0N1−1
). Since the X statistic on MB(n,N0) for much of the ranges

of n,N0 of interest is nearly symmetric, if n+(N1 − 1) n(n−1)

N0N1−1
< a1 and V ar(N1)

N1
≥ 2,

there is a good chance that EGFD(X) > a7. Based on these observations as well as
the calculations in Tables 4 and 5, we offer the following empirical rule for the testing
of GFD versus MB.

Remark 7 (empirical rule for testing GFD versusMB). Let N0 and N1 be known.

• If V ar(N1)

N1
is negligible, then a test for GFD(n,N0, N1) versus MB(n,N0)

is feasible for n ≥ n∗, where n∗ ≈ 2
log2(N0)

2 +log2(N1)+3. (Reject MB(n,N0) if
X ≤ a1.)

• If V ar(N1)

N1
is large (≥ 2), then a test for GFD(n,N0, N1) versus MB(n,N0)

is feasible for n ≥ n∗, where n∗ ≈ 2
log2(N0)

2 +log2(N1)+3. (Reject MB(n,N0) if
X ≥ a7).

• If V ar(N1)

N1
is moderate, we don’t expect X to be able to distinguish GFD and

MB.

Note that if V ar(N1)

N1
is significantly larger than 2, then somewhat smaller values

for n∗ might be tried than the one indicated above.

4.2. Tests of MB versus (MB)C guided by the empirical rule. Based
on insights from the above, Table 6 was generated to support tests for various PRNGs
with hidden states.

We ran experiments to test F (17, 5, (xor)), F (31, 13, (xor)), TGGL, and F (17, 5,+)
with the results shown in Table 7.

Based on these results

• we reject MB for F (17, 5, (xor)) at the .0011 significance level using the first
row of Table 6 (X = 1073122 < 1076416 = a1);

• we reject MB for F (31, 13, (xor)) at the .0006 significance level using the 5th
row of Table 6;

• we reject MB for TGGL at the .0006 significance level using the last row of
Table 6;
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Table 6

n N=N0 a1 A1 a7 A7

215 210 1076416 .0011 1087338 .0003

222 210 17183431930 .0011 17184829250 .0003

223 210 68726602210 .0011 68729396850 .0003

236 210 4611686076799232761 .0011 46116860996928967299 .0003

226 215 137504129300 .0006 137508062500 .0005

223 221 41912391 .0006 41973838 .0005

224 221 150933636 .0006 151056531 .0005

8 · 106 221 38488348 .0006 38546949 .0005

Table 7

Generator N0 N1 n X = test statistic

F (17, 5, (xor)) 210 23 215 1073122

F (31, 13, (xor)) 215 216 226 137503783146

TGGL 221 210 8·106 38482128

F (17, 5,+) 210 N1 = 216 222 17185098488

F (17, 5,+) 210 N1 = 216 223 68730103632

• we reject MB for F (17, 5,+) at the .0003 significance level using either row 4
of Table 7 with row 2 of Table 6 or row 5 of Table 7 with row 3 of Table 6.
In this case, the rejection is based on the fact that X > a7.

Note that in the first three cases, the sample size n corresponds to that pre-
dicted by the empirical rule. For example, the empirical rule indicates the X statistic
should distinguish between GFD(n, 210, 27) and MB(n, 210) for n ≥ 25+3+7 = 215.
In the case of F (17, 5,+) though, the empirical rule would call for a sample size
n = 25+3+16 = 224. We tried the smaller sizes because several full period runs of the

generator indicated that V ar(N1)

N1
was ranging between 3 and 6. The run for n = 223

is actually a fairly typical run and the generator will be rejected at the .0003 level
of significance most of the time. In the case of n = 222, we had to try a few runs,

but not many, to find a seed that produced V ar(N1)

N1
≈ 5.3. The X = 17185098488

reported in row 4 of Table 7 resulted from the experiment run with that seed.

Row 4 of Table 6 we believe would support the rejection of MB for the generator
F (31, 13,+), but we have not run the test because of our limited computer resources.
It is feasible, however, to run this test with current hardware. The empirical rule
would indicate a need for a sample of size 238; however, if this generator acts similarly
to F (17, 5,+), we expect the discrepancy to show up a little sooner.

If a statistic correlates significantly with X, one would expect its distribution
under MB and GFD to be different. Thus, such a statistic also should be able to
detect the difference between these two distributions and hence might serve as a basis
for testing PRNGs. Until we did the above analysis, we had been unable, when a
generator had a significant number of hidden states, to demonstrate any significant
difference using the occupation statistics γs. But on MB(n,N), X =

∑n
s=1 γss

2.
Furthermore, any actual sum will run over a relatively short number of indices, say
K << n. So, it should be possible to use some suitably chosen γs as a test statistic.
This in fact turns out to be the case, but we need to use everything we have learned
in order to help aim the test at the right place. To illustrate, consider F (17, 5, (xor)).
For reasons we will explain in a little bit, we consider N0 = 214. Then N1 = 23
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Table 8

s n = 213 n = 214

a1 A1 a1 A1

2 1131 .0001 2834 .0001

3 156 .0002 897 .0001

4 9 .0008 194 .0002

5 0 .08 26 .0005

6 NA NA 1 .005

(essentially) and the empirical rule predicts that X will detect the difference around
n = 213 or 214. Table 8 gives the cutoffs required to reject MB at the indicated
significance levels.

For n = 213, on three out of seven runs γ5 = 0, and on three out of seven runs
γ4 ≤ 9. The strongest evidence though is that on all seven runs, γ3 ≤ 172 = a2 and
A2 +A1 = .014 and this permits rejection of MB at the 10−12 significance level.

For n = 214, we only made two runs. Both times, γ6 ≤ 1, γ5 ≤ 26, and γ4 ≤ 194.
The reason we chose N0 = 214 for the above illustration is that the empirical rule

applied to the given generator indicates a sample size for the X statistic that is on
the same order or a little smaller than N0. In most cases when one has N1 > 1, it
is necessary to take n somewhat larger than N0. If n is larger than N0, the matrix
of coefficients in the first step (41) of the Chebyshev moment method becomes ill-
conditioned, especially for small s. It therefore becomes challenging to control the
errors in applying this method. Even in the case considered, we had to take great
care to control errors. This, by the way, is one advantage of using the X statistic.
We were able to calculate the relevant moments for it without any errors at all and
therefore the condition of the matrix of coefficients in the first step of the process
was of no concern. Because of certain terms in the factorial moment formulas for the
γs-statistics, it is often necessary to approximate the moments in (41).

5. Description of other conducted tests. The development of tests based on
hard estimates of tail probabilities and employing nonasymptotic methods constitute
the major thrust of this paper and almost all that is new in it. However, part of our
original motivation was to apply appropriate tests for possibly true RNGs. Because
of this we developed a number of more standard tests that are based on traditional
asymptotic methods. We describe these tests here and then, in the final section,
summarize the results of all our tests on the various generators considered in this
paper.

Homogeneity test. The binary digits are divided into ix groups of equal length
jx each; we find the quantity

s =
ix−1∑
i=0

1∑
b=0

(
y(i, b)− jx

2

)2
jx
2

,

where y(i, b) is the number of elements equal to b in the ith group. The random
variable s should have approximately a χ2-distribution with ix−1 degrees of freedom.
We find F (s), where F (·) is the corresponding distribution function. This quantity
F (s) is called “the left tail” in the program output; a generator passes the test if F (s)
is between 1 − α

2 and α
2 , where α is the level of significance; for instance, 0.005 <

F (s) < 0.995, if α = 0.99.
Arcsine test. We use the (presumably independent and symmetrically dis-

tributed) random bits to simulate a random walk. We generate a large number of



2008 FIGOTIN, GORDON, MOLCHANOV, QUINN, AND STAVRAKAS

independent trajectories of such a walk, all of them having the same (large) time
length. For each trajectory we find the fraction of time that the particle spends on
the positive half-axis. This random variable should have the so-called arcsine distri-
bution. We compare graphically two curves: the sample distribution of this random
variable and its theoretical (arcsine) distribution.

Correlation function test. We find the sample correlation function for a long
sample of consecutive random bits. Its values at different integer points should be
approximately normally distributed and independent (if we consider not too many
integer points). We find the sample distribution of these values, normalize it so that
its theoretical distribution becomes approximately uniform in [0, 1], and then compare
it with this theoretical distribution.

Collision times test. Note this is not the same as the “first collision test”
discussed in section 2.3. We combine consecutive random bits into words of some fixed
length. We generate these random words and fix the moment of the first coincidence
of the new word with some previously generated one. Then we find the moment of
the second repetition of words (this new repeating word may be the same or different
from the word that repeated previously). Similarly we find the moment of the third
repetition. Theory predicts that if the length of the words is large enough, then
certain combinations of these moments should be approximately uniformly distributed
in [0, 1] (and statistically independent). Repeating our experiment many times, we
obtain sample distributions of these random variables and then compare them with
the theoretical (uniform) distribution.

Short range correlation test. We fix the length of a binary word, generate a
large number of words, and find the frequency of appearance of each possible word. A
particular χ2 sum constructed from these frequencies should have (approximately) a
prescribed χ2-distribution. We find the probability that a random variable with this
χ2-distribution does not exceed the value that we found. This probability depends on
the sample and hence is a random variable. It should be distributed (approximately)
uniformly in [0, 1]. We repeat our experiment many times, find the sample distribution
of this random variable, and check how far it is from the theoretical (uniform) distri-
bution. This deviation, denoted by DKS , is measured by the Kolmogorov–Smirnov
statistic. Then we find the probability, pKS , for a Kolmogorov–Smirnov random vari-
able not to exceed the value DKS . The generator fails the test if pKS < 1 − α

2 or
pKS >

α
2 , where α is the level of significance.

Maximal triple correlation test. We choose two integers, n and m, and for
each pair i, j such that 0 < i ≤ j ≤ m we find the sum

s (i, j) =

n−1∑
k=0

(2βk − 1)
(
2βk+i − 1

) (
2βk+j − 1

)
,

where βk is the kth integer (0 or 1) provided by the RNG. Each of the quantities

t (i, j) =
s (i, j)√
n

has (approximately) a standard normal distribution. We evaluate

T (n, k) = max
0<i≤j≤m

|t (i, j)| ,

which is therefore the maximum of (absolute values of) m × m normalized sample
triple correlations of the sequence βk. At the same time it is (approximately) the
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Table 9
Summary of “other” tests results.

TRNG R250 RAND GGL random

H Homogeneity P/2M P/2M F/2M P/2M P/2M

A Arcsine P/.5M F/.5M F/.5M P/.5M P/.5M

C Correlation function P/.26M P/.26M F/.26M P/.26M F/.26M

B Collision times birthdays P/17M P/17M F/17M P/17M P/17M

S Short correlations P/4.6M P/4.6M F/4.6M P/4.6M P/4.6M

T Max. triple correlations P/4K F/4K P/4K P/4K F/4K

Table 10
Summary of the data sizes used in the tests of Table 9.

The number of bits used
Homogeneity 2,097,152
Arcsine 538,624
Correlation function 262,444
Collision times birthdays About 3405 bits for the first collision to occur
Short correlations 4,608000
Max. triple correlations 4000

maximum of the absolute values of the standard normal random variables. These
random variables are strongly dependent, which makes it difficult to find the distri-
bution of that maximum; hence we find an upper estimate, pT , of the probability of
the event that the above maximum is greater than T (n, k). This probability is

pT = n2

√
2

π

∫ ∞

T (n,k)

exp

(
−x

2

2

)
dx.

We reject the hypothesis that the sequence βk is a symmetric Bernoulli sequence, if
pT is too small, say, less than 10−4 (which means that the maximal triple correlation
is too far from 0). In fact, instead of the sum s (i, j), we compute a slightly different
sum s∗ (i, j) that consists of independent terms; this change enhances the accuracy of
the normal approximation.

6. Testing results for some generators. The test results are presented in
Table 9 where P means “passing,” F means “failing,” M is 106, K is 103, B means “be-
yond available computing resources,” and F/T means “fails on theoretical grounds.”
The data sizes used in the testing are collected in Table 10.

In Table 11, we summarize the results of the tests based on first collisions, FCT,
occupation statistics, γs, and the X statistic. These are developed and fully discussed
in sections 3 and 4. Here FF ∗(xor) stands for an xor lagged Fibonacci seeded by a full-
rank matrix. The tests of RAND, RANDU, GGL, and FF ∗(xor) are theoretical with
the sample sizes required for rejection determined by the empirical rule of Remark 7.

Table 11

FCT γs X
RAND F F F
RANDU F F F
GGL F F F

FF ∗(xor) F F F
F (17, 5,+) NR F F
TGGL NR NR F

F (17, 5, xor) NR F F
F (31, 13, xor) NR NR F
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